32 research outputs found

    Simulating Dynamical Features of Escape Panic

    Get PDF
    One of the most disastrous forms of collective human behaviour is the kind of crowd stampede induced by panic, often leading to fatalities as people are crushed or trampled. Sometimes this behaviour is triggered in life-threatening situations such as fires in crowded buildings; at other times, stampedes can arise from the rush for seats or seemingly without causes. Tragic examples within recent months include the panics in Harare, Zimbabwe, and at the Roskilde rock concert in Denmark. Although engineers are finding ways to alleviate the scale of such disasters, their frequency seems to be increasing with the number and size of mass events. Yet, systematic studies of panic behaviour, and quantitative theories capable of predicting such crowd dynamics, are rare. Here we show that simulations based on a model of pedestrian behaviour can provide valuable insights into the mechanisms of and preconditions for panic and jamming by incoordination. Our results suggest practical ways of minimising the harmful consequences of such events and the existence of an optimal escape strategy, corresponding to a suitable mixture of individualistic and collective behaviour.Comment: For related information see http://angel.elte.hu/~panic, http://www.helbing.org, http://angel.elte.hu/~fij, and http://angel.elte.hu/~vicse

    Wet Granular Materials

    Full text link
    Most studies on granular physics have focused on dry granular media, with no liquids between the grains. However, in geology and many real world applications (e.g., food processing, pharmaceuticals, ceramics, civil engineering, constructions, and many industrial applications), liquid is present between the grains. This produces inter-grain cohesion and drastically modifies the mechanical properties of the granular media (e.g., the surface angle can be larger than 90 degrees). Here we present a review of the mechanical properties of wet granular media, with particular emphasis on the effect of cohesion. We also list several open problems that might motivate future studies in this exciting but mostly unexplored field.Comment: review article, accepted for publication in Advances in Physics; tex-style change

    An approach for particle sinking velocity measurements in the 3–400 μm size range and considerations on the effect of temperature on sinking rates

    Get PDF
    The flux of organic particles below the mixed layer is one major pathway of carbon from the surface into the deep ocean. The magnitude of this export flux depends on two major processes—remineralization rates and sinking velocities. Here, we present an efficient method to measure sinking velocities of particles in the size range from approximately 3–400 μm by means of video microscopy (FlowCAM®). The method allows rapid measurement and automated analysis of mixed samples and was tested with polystyrene beads, different phytoplankton species, and sediment trap material. Sinking velocities of polystyrene beads were close to theoretical values calculated from Stokes’ Law. Sinking velocities of the investigated phytoplankton species were in reasonable agreement with published literature values and sinking velocities of material collected in sediment trap increased with particle size. Temperature had a strong effect on sinking velocities due to its influence on seawater viscosity and density. An increase in 9 °C led to a measured increase in sinking velocities of ~40 %. According to this temperature effect, an average temperature increase in 2 °C as projected for the sea surface by the end of this century could increase sinking velocities by about 6 % which might have feedbacks on carbon export into the deep ocean
    corecore